On the Interplay between Fairness and Explainability

Stephanie Brandl Emanuele Bugliarello Ilias Chalkidis Department of Computer Science, University of Copenhagen

1. Motivation

V In order to build reliable and trustworthy NLP applications, models need to be **both fair across different demographics and explainable**.

Usually these two, fairness and explainability, are optimized and/ or examined independently of each other. Instead, we argue that forthcoming, trustworthy NLP systems should **consider both**.

Contributions:

coAStal

I. We examine the interplay between two crucial dimensions of trustworthiness: fairness and explainability, by comparing models that were fine-tuned using **fairness-promoting techniques** or rationale extraction frameworks.

2. Datasets

We experiment with two multi-class classification datasets:
(a) MED-BIOS (Eberle et al., 2023)
Medical Occupation Classification

+ Gender: 😇 / 📀

(b) **ECtHR** (Chalkidis et al., 2021) ECHR Judgment Forecasting

+ Nationality: Mationality:

	BIOS	
Occupation	Male	Female
Psychologist	822 (37%)	1378 (63%)
Surgeon	1090 (85%)	190 (15%)
Nurse	152 (09%)	1486 (91%)
Dentist	996 (65%)	537 (35%)
Physician	650 (48%)	699 (52%)
Total	3710 (46%)	4290 (54%)
	ECtHR	
ECHR Article	E. European	Rest
3 – Proh. Torture	303 (88%)	42 (12%)
5 – Liberty	382 (88%)	51 (12%)
6 – Fair Trial	1776 (80%)	454 (20%)

II. Our experiments on multi-class classification datasets (BIOS, ECtHR):

- A. confirm recent findings on the **independence of bias mitigation and** empirical fairness (Cabello et al., 2023), and
- B. show that also empirically fairness and explainability are independent.

nt)

58

56

54

3. Methods

8 – Private Life 129 (55%) 104 (45%) 228 (88%) P1.1 – Property 31 (12%) Total 2818 (80%) 682 (20%)

Table 1: Label and demographic attribute distribution across the training sets of the BIOS and ECtHR datasets.

We work with two groups of methods:

(a) <u>Optimizing for **fairness**</u>

- 1. Group Parity (Sun et al., 2009)
- 2. Group Neutralization (Brandl et al., 2022)
- 3. Group DRO (Sagawa et al., 2020)
- 4. Spectral Decoupling (Pezeshki et al., 2021)
- 5. Debiased Focal Loss (Orgav & Belinkov, 2022)

(b) Optimizing for **explainability**

- 1. Baseline REF (Lei et al., 2016)
- 2. 3-Player Game REF (Yu et al., 2019)
- 3. 3-Player+ Game REF (Chalkidis et al., 2021)

Optimize for Fairness		Optimize for Explainability
Representational Bias		Rationale Extraction Frameworks
Group Parity (FAIR-GP): 50% 👷 – 50% 🤗 Group Neutralization (FAIR-GN): 🦞 / 🤗 → 🤶 Group DRO (FAIR-DRO): 50% 👮 – 50% 🔗 + Adaptive losses	X	→ Rationale Extractor → \bigcirc R → \bigcirc Predictor → Y \fbox R → \fbox Predictor → Y'
	B	<u>aseline:</u> 😇 (Concise + Informative Rationales R)
Penalize Over-confidency	3	<u>-Player Game:</u> 😇 🛛 R vs. Complement-based 😈 R
Spectral Decoupling (FAIR-SD): CLS Pred. 99% $\checkmark \rightarrow L_2 \leq \rightarrow Loss \leq \frac{1}{2}$	3	<u>-Player+ Game:</u> 😇 R vs. Random-choice 😈 R
Debiased Focal Loss (FAIR-DFL): Detect Pred. 99% ☑ → Loss 🤞	<u>R</u>	<u>ationales 2 Attentions:</u> Binary 😇 🛛 = Continuous 😇

4. Experiments & Results

REF-BASE

REF-R2A

BASELINE

FAIR-DFL

FAIR-SD

REF-3P

FAIR-DRO

81

Empirical Fairness (Worst Case Performance)

Figure 1: Interplay between empirical fairness, mea-

sured via worst-case performance, and *explainability*

measured via human/model alignment, of different

methods (Section 4) optimizing for fairness (FAIR), ex-

plainability (REF), or none (BASELINE) on the ECtHR

Mothod	Empirio	Empirical Fairness (mF1)						
Methoa	M \uparrow / F \uparrow / Diff. \downarrow	Nurse (M) \uparrow	Surgeon (F) \uparrow					
	BIOS _{biased} (Artificia	ally Unbalance	<i>d</i>)					
BASELINE	45.9 / 34.6 / 11.3	0.0	14.8					
FAIR-GN	<u>81.7</u> / <u>82.1</u> / <u>0.4</u>	<u>61.5</u>	<u>69.1</u>					
FAIR-DRO	53.5/60.6/ 7.1	0.0	48.5					
FAIR-SD	48.7 / 50.5 / 1.8	0.0	38.7					
FAIR-DFL	45.7 / 47.5 / 1.8	0.0	14.8					
	BIOS _{balanced} (Artif	icially Balanced	<i>l</i>)					
BASELINE	83.6 / 84.4 / 0.8	<u>76.9</u>	73.9					
FAIR-GN	<u>84.8</u> / 84.2 / 0.6	74.1	73.5					
FAIR-DRO	<u>84.8</u> / <u>85.0</u> / <u>0.2</u>	74.1	79.2					
FAIR-SD	83.5 / 86.2 / 2.6	71.4	<u>80.0</u>					
FAIR-DFL	82.6/85.8/ 3.2	74.1	76.6					

Table 2: Fairness-related metrics: macro-F1 (mF1) per group (male/female) and their absolute difference (Diff.), and worst-performing class (profession) per group, of fairness-promoting methods on the ultrabiased or debiased version of BIOS.

	B	BIOS – Occupation Cl	assificati	on		EC	CtHR – ECHR Violatio	on Predict	tion
Method	mF1	Empirical Fairness mF1 (M / F / Diff.)	Explain AOPC	ability R@k		mF1	Empirical Fairness mF1 (EE / R / Diff.)	Explain AOPC	ability R@k
BASELINE	<u>88.1</u>	85.5 / 87.5 / 2.0	<u>88.5</u>	52.0		83.5	83.1 / 83.3 / 0.2	77.4	48.8
			Optimiz	ing for Fa	airr	iess			
FAIR-GP	87.8	83.8 / <u>87.5</u> / 3.7	88.0	47.8		83.9	83.5 / 81.8 / 2.5	77.0	<u>50.5</u>
FAIR-GN	87.8	82.5 / 86.8 / 4.2	88.0	48.7			—— Not Applicable (N	√A) ⁴ —	
FAIR-DRO	87.6	84.2 / 86.4 / 2.2	88.4	48.8		83.9	83.6 / 80.6 / 3.0	77.9	49.8
FAIR-SD	<u>87.9</u>	<u>85.6</u> / 86.6 / <u>1.0</u>	<u>88.5</u>	<u>49.4</u>		<u>84.9</u>	<u>84.2</u> / <u>87.1</u> / 2.9	78.8	49.9
FAIR-DFL	87.6	84.5 / 86.4 / 1.9	87.3	45.5		84.3	84.1 / 83.6 / <u>0.5</u>	78.2	49.2
		C	Optimizing	for Expl	ain	ability			
REF-BASE	85.3	82.2 / 83.9 / <u>1.7</u>	78.1	45.7		81.8	81.9 / 81.3 / <u>0.6</u>	73.2	<u>57.1</u>
ref-3p	86.4	81.8 / 85.0 / 3.1	79.6	44.3		83.1	<u>83.3</u> / 80.8 / 2.5	73.3	54.0
REF-R2A	86.1	<u>82.4</u> / <u>85.4</u> / 3.0	<u>82.9</u>	<u>50.7</u>		82.8	82.6 / <u>83.4</u> / 0.8	<u>74.5</u>	50.9

Table 3: Test Results for all examined methods. We report the overall macro-F1 (mF1), alongside fairness-related metrics: macro-F1 (mF1) per group and their absolute difference (Diff.), also referred to as group disparity; and explainability-related scores: AOPC for faithfulness and token R@k for human-model rationales alignment. The best scores across all models in the same group (FAIR-, REF-) are <u>underlined</u>, and the best scores overall are in **bold**.

	WC	DIII.↓	$ LZ \downarrow$	Group Acc. 4
B	[OS – Oc	cupation	Classifi	cation
BASELINE	85.5	2.0	12.6	93.2
FAIR-GP	83.8	3.7	18.6	96.6
FAIR-GN	82.5	4.2	11.6	<u>65.4</u>
FAIR-DRO	84.2	2.2	21.2	98.2
FAIR-SD	<u>85.6</u>	<u>1.0</u>	<u>00.7</u>	96.0
FAIR-DFL	84.5	1.9	06.5	96.2
ECt	HR – EC	CHR Viol	ation Pr	ediction
BASELINE	83.1	<u>0.2</u>	10.7	75.0
FAIR-GP	81.8	2.7	11.3	69.6
FAIR-DRO	80.6	3.0	16.7	76.2
FAIR-SD	<u>84.2</u>	2.9	<u>00.4</u>	72.4
FAIR-DFL	83.6	0.5	04.5	<u>63.0</u>
le 4: Fairn in downstr C) and the	ess- an ream ta group-	d bias-r sk perfe wise dit	elated 1 ormanc	metrics. We see for <i>Worst-</i> e as indicator

accuracy for group classification both as bias proxies.

Figure 3: F1 and macro-F1 scores for the classes surgeon and nurse from the BIOS dataset for all methods per gender. Baseline is marked as \star , fairness-promoting methods as \circ , and REFs as \Box . We see a severe drop in performance for the underrepresented class (female surgeons and male nurses).

5. Takeaways

- A. Improving either empirical fairness or explainability does not improve the other.
- B. Many fairness-promoting methods do not mitigate bias, nor promote fairness as intended (Figure 1).
- C. Gender information is encoded to a high amount in the occupation classification task, and the only successful strategy to prevent this seems to be the normalization across genders during training.

