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2. Datasets

. Rationales, i.e., manually annotated input spans, usually serve as : 7 XQuAD (Artetxe et al., 2019)

ground truth when evaluating explainability methods in NLP. They are, | * professional translations of question-answer pairs from a subset of
however, time-consuming and often biased by the annotation process. i SQuADvl.l (Rajpurkar et al.,2016) into 11 languages.

{ « for each context paragraph, there is a set of questions that is annotated
with the correct answer

1. Motivation

©) We debate whether human gaze, l.e., webcam-based eye-tracking '
recordings, poses a valid alternative when evaluating XAl .4
*» WebQamGaze (Ribeiro et al., 2023)

Contributions: i + multilingual webcam-based eye-tracking dataset

I. We evaluate additional information provided by gaze data, such as total » participants read texts from XQuAD

reading times, gaze entropy, and decoding accuracy with respect to

human rationale annotations ‘ * in English (N=126), Spanish (N=51) & German (N=19), N=participants
II. We compare WebQAmGaze, a multilingual dataset for information- ‘
seeking QA, with attention and explainability-based importance scores '

| 3. Models
A. for 4 different multilingual Transformer-based language models o
(mBERT, distil-mBERT, XLMR, and XLMR-L) and § 2 mBERT, distil-mBERT, XLMR, XLMR-L

B. 3languages (English, Spanish, and German) * we finetune 4 multilingual LMs individually for each of the 3 languages
i after filtering out samples that have been used in WebQamGaze

* 90/10 train/validation split

 we finetune for 7 epochs and 3 different seeds

II. We find that gaze data offers valuable linguistic insights that could be |
leveraged to infer task difficulty and further show a comparable ranking }
~ of exp1a1nab111ty methods to that of human rationales. "

4 Experlments & Results
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(b) Model Explanations
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Figure 3: Entropy and decoding accuracy sepa-
rated by all languages. Medians are displayed
within the boxplots as a straight line whereas means
are shown as white dots. Data has been filtered
based on the WebGazer accuracy with a thresh-
old of 20% (orange) and additionally we removed
wrong answers (purple).

Figure 4. ROC-AUC scores for decoding rationales from attention-based and gradient-based model
explanations, i.e., decoding accuracies, across all 3 languages. Results for Gaze are model-agnostic.
. Individual samples with an F1-scores below 50 have been filtered out per model and language.
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(c) Gaze-XAl ranking

Figure 5. Comparison of gaze-based and rationale- ;¢ jayer att. -
based ranking of explanation methods for English
(EN), Spanish (ES), and German (DE) — top to bot-
tom. Ranks 1 to 5 indicate model explanations most
to least aligned with human importance scores.

9. Takeaways
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| A. First look into the possibilities of low-cost gaze data as an

oy 5
alternative to human rationale annotations
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B. We find that total reading times (all languages) and gaze
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i C. Relative position of the answer in the text as well as the text

f length and the number of tokens in the correct answer
influence the ability to decode the gold label answer
where longer texts and shorter answers lead to higher
accuracies.
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D. Rationales and gaze-based attention show comparable
¢  rankings, depending on the specific model and data

N

. This pipeline can easily be applied to other tasks and
languages.
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