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Results cont’d

Correlations based on POS tags. We also compare correlations to human fixations based

Introduction

| earned self-attention functions in state-of-the-art NLP models often correlate with human
attention. We investigate whether self-attention in large-scale pre-trained language models is

on the top-6 (most tokens) Part-of-speech tags.
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give complementary insights on the sparsity and fidelity trade-off, showing that lower-entropy
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attention vectors are more faithful.
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Figure 3: Upper: Correlations between human fixation and different models for SST (left) and Relation Extraction (right) for
the six most common POS tags. Lower: Average attention value after standardization (mean=0, std=1) for respective POS tag
and model

eon SST, correlations with E-Z Reader are very consistent across POS tags

SO ]

We compare attention functions for a variety of computational models with the task-specific
eye-tracking recordings from ZuCo [1]: 12 participants reading sentences from the English
Wikipedia (relation extraction) and SST (sentiment reading):

e attention flow shows weak correlations on proper nouns (0.12), nouns (0.16) & verbs (0.16)

e the BNC frequency baseline correlates well with human fixations on adpositions (ADP)
which both assign comparably low values
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Main results. Spearman correlation on sentence and token-level between aforementioned

models and human gaze.

Sentiment Reading (SST) Relation Extraction (Wikipedia)
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Figure 1: Spearman correlation analysis between human attention and different models for two task settings. Solid bar edges
indicate sentence-level correlations in contrast to a token-level analysis. Left: Sentiment Reading on the SST dataset. Right:
Relation Extraction on Wikipedia. Standard deviations over five seeds are shown for fine-tuned models and correlations are
statistically significant with p j 0.01 unless stated otherwise (ns: not significant).

e E-/ Reader and the frequency baseline on BNC correlate better with human gaze on SST
but not in Wikipedia

e fine-tuning and model size does not influence correlation for BERT
e correlation with attention flow does not change across layers
e shallow models correlate much less than Transformers

e mean across last (raw) attention layer does not show high correlations

Correlations based on word predictability. We compare correlations to human fixa-
tions with attention flow values for Transformer models in the last layer, the E-Z Reader
and the BNC baseline for different word predictability scores (based on 5-gram Kneser-Ney).
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Figure 2: Correlation between human fixations and different models for SST (left) and Wikipedia (right) with respect to
word predictability in equally sized bins. Word predictability scores, were calculated with a 5-gram Kneser-Ney language model.
Respective bin limits are given on the x-axis. Samples for every other bin are displayed on the upper x-axis.

e Transformer models correlate better for more predictable words on both datasets
e E-/ Reader is less influenced by word predictability

eon SST, Transformers only pass the E-Z Reader on the most predictable tokens (word
predictability > 0.03)

Faithfulness and Entropy analysis. We perform a perturbation analysis by unmasking
tokens in order from highest to lowest importance in a task-tuned BERT model.
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Figure 4: Results of our reduction analysis where most impor- ~ SPArSe€.

tant tokens are selected and fed into fine-tuned BERT models
for sentiment classification (left) and relation extraction (right).
Upper: we gradually measure output probability for the true la-
bel. Higher AUC reflects a stronger model sensitivity to adding

important tokens. Lower: Fractions of most-selected POS tags _ _ _
at the first flip are displayed for human attention (TSR), flow @ SparSIty - Faithfulness - Correlation trade-off

11, E-Z and BNC token probability

e human task-specific reading is sub-optimal
relative to task-solving, heavily regularized by
natural reading patterns

Conclusion

In our experiments, we first and foremost found that Transformers, and especially BERT
models, are competitive to the E-Z Reader in terms of explaining human attention in task-
specific reading. For this to be the case, computing attention flow scores (rather than raw
attention weights) is important. Even so, the E-Z Reader remains better at hard-to-predict
words and is less sensitive to part of speech. While Transformers thus have some limitations
compared to the E-Z Reader, our results indicate that cognitive models have placed too
little weight on high-level word co-occurrence statistics. Generally, Transformers and the
E-/ Reader correlate much better with human attention than other, shallow from-scratch
trained sequence labeling architectures. Our input reduction experiments suggest that in a
sense, both pre-trained language models and humans have suboptimal, i.e., less sparse, task-
solving strategies, and are heavily regularized by what is optimal in natural reading contexts.
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